International Conference on Advanced Technology and Particle Physics

14th ICATPP Conference on Astroparticle, Particle, Space Physics, Detectors for Physics Applications

Applications of Cosmic Muon Tracking at Shallow Depths Underground

László Oláh, G. G. Barnaföldi, G. Hamar, H. G. Melegh, G. Surányi and D. Varga

Eötvös Loránd University and Wigner RCP of the HAS, Budapest, Hungary

25th September 2013

Outline

- I. Motivation
- **II.** Structure of the Portable Tracking Detector
- **III. Detector Tests**
- **IV.** Applications of Cosmic Muon Tracking

I. Motivation

See Zhiyi Liu talk at MNR2012 (Clermont Ferrand)

• Aim of our research: detect large scale density inhomogeneities by measuring the cosmic muon flux

I. Motivation

See Zhiyi Liu talk at MNR2012 (Clermont Ferrand)

• Aim of our research: detect large scale density inhomogeneities by measuring the cosmic muon flux

> Underground density inhomogenity with higher (lower) density the cause of the decrease (increase) in muon flux.

Archeology: search for hidden chambers

Vulcanology: predict the eruptions

II. The Structure of the Portable Tracking Detector

NIM A 689 (2012) 60-69 Adv. in HEP, 560192 (2013) 1-7

- 5 Close Cathode Chambers (CCC)
 - Sensitive area per layer: 32 cm by 32 cm
- Plexiglass box (can work in 100 % humidity environmental)
- Easy to handle manually:
 - volume: 51 x 46 x 32 cm³
 - total weight: 15 kg
- Data acquisition (DAQ) system integrated into one unit
- Human Machine Interface (HMI):
 - LCD display, SD card

CCC Technology for Muon Detection

Close Cathode Chamber

- Asymmetric Multiwire Proportional Chamber which does not require weighty outer support frames
- High tolerance against mechanical inaccuracies (100-200 µm)
- D. Varga et al.: NIM A 648 (2011) 163D. Varga et al.: NIM A 698 (2013) 11
- 2 dimensional location (wires and pads)
- Triggering on coincidence of sense wires' signals
- Requires continuous gas flow during operation: non-flammable Ar CO₂

Front-End Electronics and Integrated DAQ

- Front-End Electronics:
 - 16 channels per electronic (10 FEE/chamber)
 - Analog amplification and discrimination with commercial logic ICs
 - Serial readout, all electronics can be put into one chain
- PIC32 based DAQ
 - All functions are integrated into a common system plan
 - Small unit: placed between the middle CCC layers
 - Total power consumption:
 - 380 mA at 12 V: power < 5 W !!!</p>
 - Complete unit can operate for more than 5 days with a 50 Ah battery

Analysis methodes

20

0 Pads (deg) 40

-20

-40

- Standard HEP analysis methodes have been applied
- OFFLINE alignemt of the tracking layers
- Cluster finding on layer by layer
- Combinatorical tracking
- Muon flux has been corrected by
 - tracking efficiency,
 - trigger efficiency,
 - detector acceptance,
 - duration of the measurement.

III. Detector tests

• Muon flux measurements have been done at 4 different depths (Jánossy Pit and Felsenkeller) by the REGARD Muontomograph

Our versus Earlier Measurements

 The measured vertical muon fluxes (red triangulars) are in good aggreement with the ,,world data" at shallow depth undeground!

- Angular distribution:
 f(θ) ~ cosⁿ(θ)
- Our exponents (*red triangulars*) are in aggreement with the ,,world data"!

IV. Applications of Cosmic Muon Tracking

- Cosmic background measurements at the site of a proposed underground accelerator based experiment in Felsenkeller, Dresden:
 - Maximum muon flux found below 2.5 m⁻²sr⁻¹s⁻¹

20 m

Geant 4 Simulation of the Jánossy Pit (Preliminary Results)

13

Geant 4 versus Our Measurements (Preliminary Results)

- Our measurements are not in precisely aggrement with the simulation
- Building and tunnel structures are visible by our measurements !

Speleological Research by Cosmic Muons

50 days of measurments in a natural

NIM A 689 (2012) 60-69

Summary

• **REGARD Group's Muontelescope:**

- Mobile (< 15 kg, 51 x 46 x 32 cm³) and power efficient (< 5 W)
- Precision: 1.5 mm spatial and 10 mrad angular resolution
- Cost efficient CCC technology (total cost 2000-3000 €)
- Integrated DAQ including High Voltage, Trigger System, HMI, etc
- Applications of cosmic muon tracking:
 - Cosmic background measurements at a proposed underground accelerator based experiment at Felsenkeller, Dresden, Germany
 - Reconstruction of underground tunnels
 - Speleological research in the Ajándék Cave, Pilis, Hungary
- 1. Nuclear Instruments and Methodes A 689 (2012) 60-69
- 2. Geoscientific Instruments, Methods and Data Systems 2 (2012) 781
- 3. Advances in High Energy Physics, Article ID 560192 (2013) 1-7
- 4. Cosmic Background Measurements at a Proposed Underground Laboratory by the REGARD Muontomograph, submitted to Journal of Physics: Conference Series (NPA6, Lisbon, Portugal, 2013)

Thanks for Your Attention!

Contact: László Oláh: olah.laszlo@wigner.mta.hu laszlo.olah@cern.ch

Our research is supported by OTKA KTIA CK 77719, OTKA KTIA CK 77815 and the OTKA NK-77816, OTKA PD-73596 grants and Momentum ("Lendület") grant of Hungarian Academy of Sciencies.

mse

Backup Slides

Environmental Control in the Ajándék Cave

- Enviromental parameters and detector signals were monitored
- Visual control took place regularly on weekly basis
- One 10 l bottle of 150 bar filling is sufficient for 20 days of continuous operation with 3 l/h flow.

The Duration of Muon Flux Measurements

• depends on the depth and the precision (df/f, relative error)

Cosmic setup with area of 0.5 × 0.5 m²

- It's also working in the lab! :)
- Underground tests are coming soon ...

CCC with 1 m x 0.5 m Sensitive Area

The Board of DAQ

Penetration of Cosmic muons into underground

- Cosmic muons mainly loss their energy by ionization: -dE/dL/ρ = a(E)+b(E)E
- Bremstrahlung, nuclear interactions and direct e⁻ e⁺ pair production from Monte Carlo modelling

- 5 GeV \rightarrow 10 m
- $30 \text{ GeV} \rightarrow 50 \text{ m}$
- 50 GeV \rightarrow 100 m
- 1 TeV \rightarrow 1 km