

Low Momentum Particle Detector at the NA61/SHINE Experiment

Krisztina Márton Wigner RCP, Budapest, Hungary

14th ICATPP, Villa Olmo, Como, Italy

26.09.2013

- NA61/SHINE Experiment at CERN SPS
- Centrality and slow protons in h+A interactions
- Low Momentum Particle Detector at NA61
 - Operation principle
 - Detector construction
 - Proton identification with LMPD

NA61/SHINE at CERN SPS

- SPS Heavy Ion and Neutrino Experiment
- Fixed-target experiment at CERN SPS
- Studies hadron production in hadron-nucleus and nucleus-nucleus collisions

NA61/SHINE at CERN SPS

- Large acceptance hadron spectrometer with excellent capabilities for momentum, charge and mass measurements
- Time Projection Chambers, Time of Flight and Projectile Spectator Detectors

NA61/SHINE at CERN SPS

- Search for the critical point of strongly interacting matter
- Detailed study of the onset of deconfinement
- Study of high transverse momentum phenomena in p+p and p+A
- Reference measurements for neutrino and cosmicray experiments

Centrality of h+A collisions

- Centrality dependence of charged hadron production in h+A collisions is observed
- Earlier h+A measurements

 → Centrality of h+A
 collision is correlated to the
 number of slow ("gray")
 nucleons (produced by the
 "break-up" of the nucleus)

Low Momentum Particle Detector at NA61

- → identification and energy measurement of low momentum particles in p+A collisions
- → Centrality Detector

Low Momentum Particle Detector -Operation principle

- Time Projection Chamber
- Intervals in particle range defined by absorber layers
- Simultaneous measurement of dE/dx and range: energy and identification
- dE/dx measured over 1.2 cm in a small TPC (field cage printed on absorber)

7

• Electronics: same as for other NA61 TPCs

LMPD – Readout MWPC

- Radial pad-structure
- 5x2 detection layers, number and size of pads increase towards the outer pad-rows
- 4 absorber layers, 2x2 wedges

Sense wires: 21 μm Field wires: 100 μm

- The gain is far below the "normal" TPC gain due to high ionization: gating grid is not necessary
- Follow decreasing ionization due to increasing range → gradually increasing gain towards outer pad-rows

LMPD – Readout MWPC

LMPD – Field cage and absorbers

- 4 absorbers (glass-epoxy)
 - 0.5mm, 1mm, 2mm, 2.5mm
 - effective thickness depends on the angle of incidence
 - Double wall:
 - Inner: 60 µm kapton
 - Outer: 40 µm mylar
 - Outer field cage

→ 60 μm kapton foil printed with 5 μm Cu strips

Inner field cage
 → printed on absorbers

LMPD at NA61

Data taking with LMPD

2011

- Standalone data taking at "downstream position" (Pb, Al, C targets)
- Test run in "target position" with full NA61 detector system

- Krypton calibration
- p+Pb at 158 GeV/c
 - ~ 10 million events

Data taking with LMPD

• HV settings:

and the second sec	Jura	Saleve	
HV	1150 V	1150 V	
Layer 9-10	1072 V	1092 V	
Layer 7-8	1046 V	1066 V	
Layer 5-6	1020 V	1040 V	
Layer 3-4	995 V	1013 V	
Layer 1-2	970 V	987 V	

- Drift voltage: -4kV
- Field wires: -400V
- Sense wires:
 - Kr run → 970V, without resistor chain (same HV on every SW)
 - Physics runs → 1150V, constant voltage drop after each absorber layers
- Gas-mixture: 85% Ar + 15% CO₂

Relative gain calibration of the pads

- → random trigger events with ⁸³Kr source
- → ⁸³Rb foil into the existing gas system via a bypass line
 - Short lifetime of ^{83m}Kr gas
 - \rightarrow the chambers could be operated normally after few half-lives
 - \rightarrow no disposal of radioactive gas was necessary
- Charge distribution of Kr clusters on all pads in LMPD → peaks are visible after the calibration

Event reconstruction and performance

Layer 2

- First step → **cluster** reconstruction •
- Second step → track reconstruction •
 - **Combinatorial** track finding \rightarrow position resolution (~1mm)
 - Hough transformation, combined with maximum likelihood principle

400

350

300

250

200

150

100

500

450

400

350

300

250

200 150

100

50

-4 -3

50

-2

-2

-1 0

Vertical resolution (timebin)

2 З

-1 0 1 2 3

Horizontal resolution (mm)

-3

Entries

Entries

Layer 10

0 1 2 3

Horizontal resolution (mm)

Vertical resolution (timebin)

-2 -1

-3

-3 -2 -1 0 1 2 3

250

200

150

100

50

350

300

250

150

100

50

Entries 200

Entries

Main vertex distributions

- Fitted tracks → extrapolation to the Z = const plane (intersecting with the target)
- Distributions of intersection point coordinates for "target in" and "target out" data
 - → Target is clearly visible
 - \rightarrow empty target contamination is less than 1%

Particle identification with LMPD

- Particle identification with LMPD → simultaneous measurement of dE/dx and range
- Particles with range 0.5 mm < r < 1.5 mm stop in 2nd absorber
- 2D energy distribution → proton peak is clearly visible

Summary

- NA61/SHINE → fixed target experiment at CERN SPS
 → p+p, p+A and A+A collisions
- p+Pb interactions → centrality classes can be determined from the number of "gray" protons
- Low Momentum Particle Detector
 - → TPC with absorber layers
 - → identification of slow particles from dE/dx and range
 - → *Centrality Detector* in p+Pb collisions
 - → 2012: ~10 million events @ 158GeV/c
 - → data taking will be continued in the end of 2014

Thank you for your attention!

Kr spectra in LMPD on 1 pad (3D cluster finder)

Kr calibration

Without calibration (1 pad, 2D cluster finder)

With calibration (1 pad, 2D cluster finder)

Energy deposit distribution for particles stopped in 3rd absorber

Before Kr calibration

After Kr calibration

Comparison with PAI simulation

Absorber number	Thickness (mm)	Thickness (g/cm2)	Cumulative thickness (g/cm2)	Momentum cutoff (MeV)	Most probable ionization
1	0.5	0.106	0.106	127	100
2	1.0	0.213	0.319	171	63
3	2.0	0.425	0.744	216	38
4	2.5	0.532	1.276	250	26

Absorber thicknesses, approximate momentum ranges and ionization (in 1.2cm Ar) for perpendicular incidence