

Gaseous Beam Position Detectors, with Low Cost and Low Material Budget

Gyula Bencédi

on behalf of the REGaRD group

MTA KFKI RMKI, ELTE

November 29, 2011, 11. Zimányi Winter School, Budapest

Outline

- Physics Motivation
- Newish MWPCs, the Close Cathode Chamber technology
- The Beam Position Detector (with reduced material budget)
- Construction of a cost-efficient **BPD** Chamber
- Test measurements (in Lab and @ CERN PS)
- BPD upgrade and first tests (Oct-Nov 2011)
- Summary

Physics Motivation I.

Physics Motivation II.

- Small Padsize → need good spatial resolution (~1mm, <1mm) MWPCs
 → track-by-track Particle Detection
- REGaRD group (from 2009, RMKI-ELTE Gaseous Research and Development)
 - → develop gaseous particle detectors (<u>MWPC</u>, GEM, TGEM+CCC Photon Detector)
 - → <u>state-of-the-art MWPCs</u>, with Close Cathode Chamber technology

Newish MWPCs, the Close Cathode Chamber technology I.

Cathode Planes

• Multi Wire Proportional Chambers (Charpak, 1968)

- \rightarrow Thin anode wires (Sense wires (+), ~10-100 um)
- \rightarrow Cathode plates
- \rightarrow Closed, noble-gas (e.g. Ar) filled volume
 - + few % quenching gas (e.g. CO2)

"bad" (~ 10um) mechanical tolerance

- \rightarrow Need robust frame \rightarrow increasing material budget
- \rightarrow rising unwanted secondary interactions

Possible improvement:

asymmetric wire-pad distance \rightarrow <u>CCC technology</u>

Incident Particle

Amplification of ionization

Anode Sense Wires

Newish MWPCs, the Close Cathode Chamber technology II.

The Beam Position Detector (with reduced material budget)

LO, MIP (~1m) CCC version, Aug. 2011

<u>BPD (~5-15cm) CCC version.</u> 2010 - 2011

11. Zimányi Winter School, Budapest

Construction of a cost-efficient BPD Chamber (Oct. 2011)

Test measurements in Lab I.

• Basic cosmic-muon tests with analog and digital 2D readout (on wires and pads)

Some parameters right after the run

No. Collected events17603Collection time158 hours 27 mins 57 secsNice / Good track events on sensewires443 (2.5 %) / 3738 (21.2 %)Nice / Good track events on pads430 (2.4 %) / 3152 (17.9 %)High VoltagesSenseWire: 880.0 V, FieldWiGasAr/C02 - 16.8/1.4, GasFlow

17603 158 hours 27 mins 57 secs 443 (2.5 %) / 3738 (21.2 %) 430 (2.4 %) / 3152 (17.9 %) SenseWire: 880.0 V, FieldWire: -500.0 V, Cathode: -500.0 V Ar/CO2 - 16.8/1.4, GasFlow = 10 l/h

Typical cosmic setup with 6 layers of BPDs (Feb. 2011)

```
Trigger speed: ~1.85 event/min

→ too slow to study in detail

→ need beam tests @ CERN PS
```

Test measurements in Lab II.

Test measurements in Lab III.

Test measurements @ CERN PS I.

^{11.} Zimányi Winter School, Budapest

Test measurements @ CERN PS II.

- → Efficiencies, Uniformities: OK
- → Spatial resolutions are such as we expected (generally 1-2mm, best case ~1mm)

To increase the resolutions more: BPDs need to be upgraded → new construction → capable to readout with HMPID electronics

BPD upgrade and first tests (Oct-Nov 2011)

First cosmic test, 22nd Oct 2011

Upgrade: $16 \rightarrow 32$ channel PAD. thiner PCBs (0.5mm !), included **HMPID** Gassiplex connectors

16 Chs of FWs 32 Chs of PADs At first run: event 54 - 12199371 us ~95% efficiencyXX.....XXX....XX....XX.....XX...XX.... XXXXX..... event 55 - 12265503 us X.XXX.....XXX.....XX...... ...XX....XXX..... ...X.....XXX..... New BPDs First run in VHMPID beam test, Nov 2011 new TCPD

Nov 29, 2011

Ongoing analysis from the latest data, preliminary...

Summary

- BPDs are potentially good candidates to measure charged particle track positions with high efficiency (The Close Cathode Chamber technology works fine)
- Spatial resolution is good, it can be even better in the upgraded version (expected to be under 500 microns due to the newly developed version)
- Manifestly easy to construct relatively cheap BPDs, containing low amount/cost material budget
- Hopefully they will serve reasonable resolutions in VHMPID beam tests, and in other applications as well